
365 DataScience A very simple CNN network -
Convolutional layer

Importing the relevant packages
import tensorflow as tf

The outlined code below is to show how we can add a convolutional lay
er to a network,
It does not include any actual data, thus, cannot be trained
You can include any image data you want, after properly preprocessing
it

Tensorflow the process of creation of neural networks to the followin
g steps:
- defining a model variable with the different layers
- compiling the model variable and specifying the optimizer and loss
function
- OPTIONAL: defining early stopping callback
- training the model with '.fit()' method

Creating the model
Outlining the model/architecture of our network
model = tf.keras.Sequential([

tf.keras.layers.Conv2D(filters, kernel_size, activation='relu', inp
ut_shape=input_shape),

tf.keras.layers.Flatten(),
tf.keras.layers.Dense(classes) # You can apply softmax activation h

ere, see below for comentary
])

As you can see, we can include a convolutional layer with the simple
line 'tf.keras.layers.Conv2D'

Important parameters of Convolutional layers:
- filters: Integer, signifies how many filters/kernels to be included
in the layer, thus, it controlls the output space.
Popular values - 32, 64, 128, 256, 512, 1024
#
- kernel_szie: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
Popular values - 3, 5, 7, 11
#
- input_shape: Only specified in the first layer of the network. Indi
cates the shape ofthe input data.
Tensor with format '(batch_size, rows, cols, channels)
'. You can ommit the batch_size.

For example, the input shape for the MNIST dataset wou
ld be (28,28,1)

Finally, the 'classes' parameter specifies how many classes we have f
or the classification.

Compiling the model
Defining the loss function

In general, our model needs to output probabilities of each class,
which can be achieved with a softmax activation in the last dense lay
er

However, when using the softmax activation, the loss can rarely be un
stable

Thus, instead of incorporating the softmax into the model itself,
we use a loss calculation that automatically corrects for the missing
softmax

That is the reason for 'from_logits=True'
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=Tru
e)

Compiling the model with Adam optimizer and the cathegorical crossent
ropy as a loss function
model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])

Defining early stopping callback
Defining early stopping to prevent overfitting
early_stopping = tf.keras.callbacks.EarlyStopping(

monitor = 'val_loss',
mode = 'auto',
min_delta = 0,
patience = 2,
verbose = 0,
restore_best_weights = True

)

Training the model
Train the network
model.fit(

train_data,
epochs = NUM_EPOCHS,
callbacks = [early_stopping],
validation_data = validation_data,
verbose = 2

)

Here, you need to provide train data and validation data, as well as
specify for how many epochs to train.

Start your 365 Journey!

	365 DataScience A very simple CNN network - Convol
	Creating the model
	Compiling the model
	Defining early stopping callback
	Training the model

